热点:
    视频数据挖掘技术在监控系统中的应用
      [  海康威视 投稿  ]  
    收藏文章 阅读全文 暂无评论

      数据挖掘流程

      视频数据挖掘的目的是建立底层视频数据到高层语义信息之间的映射关系,由于这种映射关系比较复杂,一般采用多层次的信息提取及映射技术来最终实现数据挖掘过程,其信息提取的层次模型可以由图3表示。在视频数据挖掘过程中,从底层的视频数据中首先提取低层图像特征信息,包括图像纹理、图像色块、运动矢量、图像边缘、灰度直方图等信息,这类信息无法为我们所直接理解,它们是提取元语义信息的基础。然后利用目标检测、目标跟踪、特征比对等手段从图像特征中提取元语义信息,包括运动目标、运动目标轨迹、车牌图片、人脸图片等,这类信息已经可以为我们所理解,但是离最终应用还有距离。最后将元语义信息融合为高层的语义级描述信息,例如融合运动目标轨迹信息及用户设计的禁区信息所生成的描述内容为“发现有人闯入禁区”的语义级报警信息,再例如融合目标行人目标检测信息及运动轨迹信息可以生成客流量统计报表……随着提取信息的层次越高,其包含的信息量逐步减少,其信息的抽象程度越高,也更接近我们所能应用及理解的范畴。

    视频数据挖掘技术在监控系统中的应用
    图表 3信息层次结构

      行业应用分析

      不同行业对于视频信息的需求及应用方式是截然不同的,因此很难开发出一套通用的视频数据挖掘技术去适用于各个行业。在现有的技术发展水平下,比较合理的做法是根据各行业的需求开发专用的视频数据挖掘系统。以下笔者将着重介绍异常事件报警应用及客流量统计应用。

    视频数据挖掘技术在监控系统中的应用
    图表 4 语义级事件信息效果图

    security.zol.com.cn true //security.zol.com.cn/278/2786955.html report 1202   数据挖掘流程   视频数据挖掘的目的是建立底层视频数据到高层语义信息之间的映射关系,由于这种映射关系比较复杂,一般采用多层次的信息提取及映射技术来最终实现数据挖掘过程,其信息提取的层次模型可以由图3表示。在视频数据挖掘过程中,从底层的视频数据中首先...
    提示:支持键盘“← →”键翻页阅读全文
    本文导航
    不喜欢(0) 点个赞(0)

    推荐经销商

    投诉欺诈商家: 010-83417888-9185
    • 北京
    • 上海