听上去很酷,但实现起来很难
的确,「人脸识别」技术有着十分广泛的应用范围和落地场景。但不可否认的是,过高的技术门槛和相关人才的缺失成为了其发展的最大短板。以国内为例,有关「人脸识别」的最核心技术和人才基本集中于 BAT 这样的科技巨头手中,而巨头们出于自身生态和战略的考虑都对相关技术进行着有限开放和相对封闭的上层领域开发;而技术能力相对较弱的中小团队只能凭借着不断的摸索从小的领域寻找突破口。此外,由于关键技术的封闭,在现实应用领域,光线、角度等因素仍对识别结果有着一定的影响,识别结果的精确度和安全性仍有很大的提高空间。
其次,目前国内的「人脸识别」也缺乏统一的技术标准。虽然国内团队在类似 LFW 的国际标准测试中的精度不断提升,基本上每家的 LFW 通过率都在 95% 以上,但真实的场景要比 LFW 的测试复杂得多,行业对「人脸识别」技术的评判缺乏一个更为细致的可靠辨识度。
与此同时,用户数据信息渠道的封闭也使得用户图像信息与其他相关信息间的关联缺乏有效连接,各公司和开发者依据自身数据积累进行研发的小闭环难以形成生态效应,这也加大了「人脸识别」技术准确度在海量数据研究基础上的提升。
同样,有关「人脸识别」所涉及的隐私问题也一直备受争议。此前,Facebook 因为未经用户允许而私自储存和使用用户的「人脸识别」数据而饱受诟病;而 Google 则因隐私政策和舆论压力而禁止 Glass App 使用「人脸识别」功能。这是涉及到用户个人信息安全的共性问题,一方面需要企业合开发者们有过硬的技术实力来保证用户数据安全,同时对用户数据在征得同意的情况下进行合理使用;另一方面也需要对相关用户市场进行针对性教育。
未来,共性合作大于个性爆发
任何行业和技术的发展都不会一蹴而就,一个健康生态的形成也绝非一朝一夕。我们不可否认「人脸识别」技术的发展前景,但也不能忽视它在发展中所存在的问题。当然,这些问题也并非哪一方就能解决的,需要整个行业各环节的共同努力。
对于「人脸识别」技术的开发团队而言,除了在技术研发方面的努力外还应拓展技术实现场景,实现有效数据积累。在用户市场,除了上述的小众娱乐领域,开发团队们还可以进行安全解锁和数据检索方向的探索;而在企业市场,企业级身份认证和基于「人脸识别」的可穿戴设备及智能家居植入也有很多的想象空间。毕竟,依托海量数据的技术研发才更具有应用的精准度和可靠性。
对于 BAT 这些生态级的巨头而言,开放战略不能仅仅纸上谈兵。相关技术与数据的开放带动的是整个生态的繁荣,之如 Google 对 Android 的开源政策,只有大的行业生态不断向前发展才能带动小生态稳定繁荣。对中小开发团队的开放与合作能够给巨头企业带来更多的想象空间,从底层小众应用到上层生态构造,让「人脸识别」技术可以形成「链条式」的打通,推动更多应用场景的产生,而不是各自闭门造车。
对于整个行业而言,无论是 BAT 还是中小开发团队,建立一个行之有效的技术评判标准与隐私尊重政策是迫在眉睫的必要之举。只有在一个公正客观的行业环境下才能更好地教育市场和用户。
关于「人脸识别」,可以预计的是一个不断上升的发展空间和愈加丰富的应用场景,但要真正实现技术落地和生态打通还需要行业各环节的相互配合。
人脸识别很火 但你不知道的还有很多
2015-05-15 05:15:00 [ 安防知识网 转载 ]
本文导航
- 第2页:听上去很酷 但实现起来很难
推荐经销商